

+two other 2011 papers

Uniform Random Voronoi Meshes

Mohamed S. Ebeida & Scott A. Mitchell (speaker)

20th International Meshing Roundtable Paris, France

Summary

- Random Polyhedral Meshing
 - Generate random points using the maximal Poisson-disk process

Points placed on reflex boundary features, but not concave or flat features

- Contrast to primal methods
- Symbolically split points (not in paper)
- Construct Voronoi cells
 - Bounding box, cut by boundary and Voronoi planes
 - Bounding box works because cells have bounded size
 - Small edges collapsed
- Get
 - Voronoi mesh of convex polyhedral cells
 - Bounded cell aspect ratio and facet dihedrals
 - Random orientation of mesh edges

Needed for fracture mechanics where cracks are restricted to edges

Maximal Poisson-Disk Sampling (MPS)

What is MPS?

— Dart-throwing

Insert random points into a domain, build set X

With the "Poisson" process

Empty disk:
$$\forall x_i, x_j \in X, x_i \neq x_j : ||x_i - x_j|| \geq r$$

Bias-free:
$$\forall x_i \in X, \forall \Omega \subset \mathcal{D}_{i-1}$$
:

$$P(x_i \in \Omega) = \frac{\operatorname{Area}(\Omega)}{\operatorname{Area}(\mathcal{D}_{i-1})}$$

Maximal:
$$\forall x \in \mathcal{D}, \exists x_i \in X : ||x - x_i|| < r$$

Statistical Process ≠ Algorithm

Algorithm progress

sliver regions

Efficient maximal Poisson-disk sampling"

First provably correct, time- space-optimal algorithm.

Mohamed S. Ebeida, Anjul Patney, Scott A. Mitchell,

Andrew Davidson, Patrick M. Knupp, and John D. Owens.

ACM Transactions on Graphics (Proc. SIGGRAPH 2011), 30(4), 2011.

Background grid of squares (cubes...) for locality

Everything is O(1)

Efficient maximal Poisson-disk sampling

- Algorithm
 - Phase I without selecting from entire domain
 Throw darts in squares
 - Pick square uniformly
 - Pick point in square uniformly

Bias-free:

- Phase IIThrow darts in polygons ⊃ slivers
 - Pick sliver weighted by area
 - Pick point in sliver uniformly

E(n) throws proof idea

 $\forall x_i \in X, \forall \Omega \subset \mathcal{D}_{i-1}:$

 $P(x_i \in \Omega) = \frac{\operatorname{Area}(\Omega)}{\operatorname{Area}(\mathcal{D}_{i-1})}$

 Hit/miss ratio = Voronoi cell area ratio > constant.

In practice, use flat implicit octree in d>2

Also Triangular Meshes

"Efficient and good Delaunay meshes from random points."
Mohamed S. Ebeida, Scott A. Mitchell, Andrew A. Davidson, Anjul Patney, Patrick M. Knupp, and John D. Owens.

Computer-Aided Design, 2011. Proc. 2011 SIAM Conference on Geometric and Physical Modeling (GD/SPM11).

- Reverse cause-effect
 - Delaunay Refinement:
 Insert circle-centers to kill large Delaunay circles
 - Maximal sample results
 - MPS: Insert points randomly to maximally sample
 - · Small Delaunay circles result
 - Nearly identical angle bounds either way
 - · Delaunay circle-centers can be ignored!

Angle Distribution

—Internal Triangle Angles
—Boundary Triangle Angles

25 35 45 55 65 75 85 95 105 115 125

Angle (bin min degrees)

Cover the boundary with random disks

- Simple algorithm for covering the boundary randomly
 - Complicated geometric proof

"Efficient" for MPS, scales great, but how fast?

- Delaunay refinement
 - Points from deterministic process fast
- MPS
 - Points from strict unbiased random process slow
- But once points are generated we're as fast as Triangle, and our GPU code is 2x faster

What is MPS good for?

- Fracture mechanics simulations
 - Fractures occur on Voronoi cell boundaries
 - Mesh variation ⊂ material strength variation
 - Ensembles of simulations
 - Unbiased sampling gives realistic cracks
 - Edge orientations are uniform random
 - Domains: non-convex, internal boundaries

Impact
Joe Bishop, SNL org 1500
Fracture simulation
Need random meshes because cracks are along edges

Fracture Simulations

Alternatives

- Voronoi Mesher
 - CVT Centroidal Voronoi Tessellation
 - Seed = cell's center of mass
 - Via iterative adjustment of seed location
 - Good shaped cells, but "biased", regular mesh
 - Target app: fracture simulations with fracture along mesh edges
- Primal meshers
 - Miller: maximal disk packings for bounded edgeradius tet meshes
 - Shimada and Gossard Bubble meshes
 - Force network, insertion and removal

IMR paper algorithm!

- Random Polyhedral Meshing
 - Generate random points using the maximal Poisson-disk process

• Points placed on reflex boundary features, but not concave or flat features

- Contrast to primal methods
- Symbolically split points (not in paper)
- Construct Voronoi cells
 - Bounding box, cut by boundary and Voronoi planes
 - Bounding box works because cells have bounded size
 - Small edges collapsed
- Get
 - Voronoi mesh of convex polyhedral cells
 - Bounded cell aspect ratio and facet dihedrals
 - Random orientation of mesh edges

Needed for fracture mechanics where cracks are restricted to edges

Boundary Sampling

- Maximally sample
 - Points interior to domain, not on boundary...
 ...unless we have to:
 - · Reflex features require special care, not sharp ones
 - "Reflex" includes 2-sided facets
 - Not the dual of a body-fitted primal mesh
 - Better (not constant 90°) dihedrals at boundary
- Goal: cells align with boundary features, cells are convex

 Sufficient: every point on a reflex face is closest to a sample from that reflex feature (or sub-facet)

vertex-seed

height $\geq \sqrt{r^2 - r_e^2}$ r disk-free $\geq r_e$ if $r_e = r/2$ r_e maximality $p \leq r_e$ Reflex face (line, plane, ...

Χ

interior-seed

edge-seed

border edge

reflex boundary edge

fringe-seed

edge border eage

Bonus: Convex Cells Paper: star-shaped cells at reflex faces

- Clipping by boundary
 - By prior page only non-reflex (convex) boundary features affect interior samples
 - Intersection of convex Voronoi cell w/ convex boundary = convex clipped cell
- Symbolic duplication of reflex samples

Voronoi Quality

- Provable facet dihedral angle bounds
- Provable cell aspect ratios

Quality proof idea

Bias free:
$$\forall \Omega \in \mathcal{D}_{i-1} : P(x_i \in \Omega) = \frac{\operatorname{Area}(\Omega)}{\operatorname{Area}(\mathcal{D}_{i-1})}$$

Empty disk: $\forall x_i, x_j \in X, i \neq j : ||x_i - x_j|| \geq r$ (1b)

Voronoi:

Maximal: $\forall p \in \mathcal{D}, \exists x_i \in X : ||p - x_i|| < r$ (1c)

 $V_i = \{p\} \in \mathcal{D} : \forall j, ||p - x_i|| \leq ||p - x_j||$

- "Maximality" bounds the maximum distance from Voronoi cell seed to its vertices
 - = Delaunay vertex to circle center
- "Disk-free" bounds the minimum distance between two seeds
 - = a Delaunay edge

Voronoi facet dihedral angles:

Delaunay triangle angles:

(b) Central Angle Theorem.

as Chew 89

Aspect Ratio Proofs (star-shaped cells)

- Aspect ratio
 - Circumscribed sphere radius < r (from maximality)</p>

– Inscribed sphere radius > some factor r (from disk-free)

If cell is interior: r/2

Facets of one vertex

fs : disjoint facet from v

Clipped by one facet: r/4 Facets of one edge

Disjoint facets: feature size fs

$$A \le 4 \max\left(\sqrt{2}, r/fs\right) \max\left(1, \frac{1+\sin\omega}{2\sin\omega}\right)$$

Interior cells

Interior cells

Observed $A \le 4 \max(\sqrt{2}, r/fs) \max(1, \frac{1 + \sin \omega}{2 \sin \omega})$

star-shaped cells

Quality plots Dihedral Angles

provably \in [30°,150°] near one border facet provably \in [20.7°,159.7°] otherwise

Recall proofs idea:

Distance from seed to cell vertex bounded above by maximality cell facet distance bounded below by disk-free

Quality: what's missing?

Work in progress:

- Short edges
 - Collapsed, leading to non-planar faces
 - OK for Joe Bishop fracture simulation but not ideal
- Voronoi facet aspect ratio bounds
 - Smoothing or sample insertion constraints may fix
- 90° facet dihedrals between samples on reflex faces. (Recall no samples on other faces)
 - Small random perpendicular offsets may fix

Conclusions

- w/ Patney, Davidson, Owens (UC Davis)
- w/ Knupp, Bishop, Martinez, Leung (SNL)
- 1. Maximal Poisson-disk sampling point clouds
 - Essence: First provable maximal, bias-free, O(n) space, E(n log n) time
 - Impact: Graphics hot topic (texture synthesis).
 Ensemble calculations for V&V
 - 2. Triangular meshes
 - Essence: Provable quality bounds from random points
 - Impact: Seismic simulations
 - 3. Voronoi meshes
 - Essence: NOT the dual of a boundary-fitted triangulation
 - Impact: Fracture simulations

Efficient Maximal Poisson-Disk Sampling. Ebeida, Patney, Mitchell, Davidson, Knupp & Owens. SIGGRAPH 2011. ACM Transactions on Graphics.

Efficient and Good Delaunay Meshes From Random Points. Ebeida, Mitchell, Davidson, Patney, Knupp & Owens. SIAM Conference on Geometric and Physical Modeling. J Computer-Aided Design special issue.

Uniform Random Voronoi Meshes.
Ebeida & Mitchell.
International Meshing Roundtable, Oct 2011.

- Community should consider using maximal samples for mesh points... even if Poisson-disk process isn't important
 - Better sizing control.
 - Never O(n²)
 - To do: study element count and grading vs. Delaunay refinement.

